
August 2000 The Delphi Magazine 59

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Unexpected COM Error

QI have an out-of-process
Automation server which is

being accessed from an Automa-
tion client. A timer in the client reg-
ularly calls functionality in the
server. If I right-click on the client’s
icon in the task bar (to produce the
application system menu) I get an
exception each time my timer
ticks, saying: ‘An outgoing call can-
not be made since the application is
dispatching an input-synchronous
call’. What does this mean?

AThis error has cropped up
before in The Delphi Clinic.

Back in Issue 14 a reader wondered
why a Delphi 2 Automation client
gave a misleading message under
exactly the same circumstances.
The message, ‘Method xxxx is not
supported by OLE object’, was
displayed by Delphi 2 when any
error-indicating HResult was re-
turned from an attempt to call the
Automation server’s IDispatch.
GetIDsOfNames method, regardless
of whether it really was a
DISP_E_UNKNOWNNAME error or not.
This was done because the default
Windows descriptive message for
the DISP_E_UNKNOWNNAME of ‘Un-
known name’ was considered too
terse.

However, there are more
error-indicating HResult values
that can be returned by
IDispatch.GetIDsOfNames than just
DISP_E_UNKNOWNNAME. Under the cir-
cumstances outlined in the ques-
tion, the error actually produced
from a call to any COM interface
method is RPC_E_CANTCALLOUT_
ININPUTSYNCCALL. The problem is all
to do with COM threading models
and synchronisation of COM
method calls.

In summary, the facts are as
follows. The client application has
its primary thread running in a

single-threaded apartment (STA).
For more information on apart-
ments, see my Multi-Threading And
COM article in this issue. The client
thread enters the apartment by
using ComObj either explicitly or
implicitly, and ComObj by default
enters an STA, unless you specify
otherwise with the CoInitFlags
variable.

Since the client and server are in
different processes, the client
application talks to a COM proxy
object that represents the real
server COM object. Proxy objects
operate on cross-process COM
method calls by turning them into
Windows messages with appropri-
ate parameter data. The message is
posted to a COM-managed window
in the server application to be
dealt with, by turning it into a real
method call within that process.

When the method finishes exe-
cuting, a message is delivered back
to the client, allowing it to termi-
nate a COM-managed modal mes-
sage loop that stops any more
client thread code executing.
Notice that the client thread code
relies upon the server’s thread
being alive and awake in order for
the message to be processed, so
the client can ultimately continue.

Consider the possible scenario
of the server’s thread not being
available. Maybe it is frozen by a
call to Sleep, WaitForSingleObject,
or even SendMessage. In these cases,
the server will not immediately
respond, the response time being
determined by when the server
thread is able to continue working.

This would equate to after Sleep
has finished its delay, when the
object waited for by WaitFor-
SingleObject has become sig-
nalled, or the window procedure
or message handler processing the
message has finished processing it
and returned.

Now consider the possibility
that the server process could have
sent a message (with SendMessage)
to the client’s thread. The client
may take some time to process the
message, meaning the window
procedure takes some time to
return. Consider also what
happens if the client message
handler still processes message
queue messages, say with calls to
Application.ProcessMessages.

In this case, the timer object’s
message will still be processed. If
the timer’s event handler makes a
COM method call under these cir-
cumstances, there is the possibil-
ity of a deadlock. If the timer event
handler calls the COM object
whilst the server is blocked wait-
ing for the client to finish process-
ing a sent message, the client will
also block waiting for the server to
process the COM method call. This
means that they are both blocked
waiting for each other and neither
will back down.

To avoid this situation, COM
checks to see if the calling thread
is still processing a sent message
before allowing a COM method call
to be made. If it is processing a sent

➤ Listing 1: Avoiding errors in
COM STA client code.

procedure TForm1.Timer1Timer(Sender: TObject);
begin
try
if not InSendMessage then
Caption := DateTimeToStr(Clock.CurrentDateAndTime)

except
on Exception do
Timer1.Enabled := False;
raise

end
end;

end;

60 The Delphi Magazine Issue 60

message, an STA client will be
given the RPC_E_CANTCALLOUT_
ININPUTSYNCCALL error, regardless
of who sent the message (that
information seems hard to track
down).

This is the error seen by the
questioner, and this is caused
because a right click on the client
task bar button sends a message to
its Application object to start a
system menu processing loop.
This message appears to take
some time to process, the amount
of time that the menu is displayed
on the screen. As soon as the menu
disappears, the Application mes-
sage handler returns and so
STA-generated COM method calls
can be resumed.

You can avoid the error quite
simply. If you are writing code that
may potentially be called whilst
the taskbar button’s popup menu
is being displayed, then only exe-
cute the COM calls if the
InSendMessage API returns False.
InSendMessage makes a simple
check to see if the calling thread is
still dealing with a message sent by
SendMessage. You can see some
simple COM code in Listing 1 that
uses InSendMessage to avoid calling
a COM method under problem
circumstances.

To prove that your application
will be in the middle of a
SendMessage call whilst a task bar
system menu is produced, try the
following. Make a new application
with a timer component on it. Set
the timer’s Interval property to 10

milliseconds. Now make an OnTimer
event handler for the timer and add
in the code from Listing 2.

This ensures that the form is
green unless the application is pro-
cessing a sent message, where-
upon it goes red. Try running it and
the form will be green. If you right
click on the task bar button, it will
immediately go red until the
system menu disappears.

I have not been able to repro-
duce the questioner’s error on
Windows 2000, which may imply
that COM makes more stringent

checks before producing such an
error on that platform.

Delphi And Email

QWhat is the best way to send
an email with an attachment

with it from a Delphi 5 application?

AI wouldn’t know how to
quantify which is the best

way, but let’s look at a couple of
options available to Delphi 2 and
later.

Firstly, you could use MAPI
(Microsoft’s Mail API). You can get
a good start with sending a mes-
sage using MAPI by using one of
the Delphi wizards. Choose File |
New... and go to the Projects page
and then invoke the Win95 Logo
Application or Win95/98 Logo
Application, depending on which
version of Delphi is installed. This
makes an application in a directory
of your choosing that includes a
File | Send menu item.

The implementation of this
menu item gathers up the text
entered in a rich edit control and
sets it as a field in a MAPI message
record (see Listing 3). It does not
concern itself with specifying the
sender or intended recipient, or of

procedure TForm1.Timer1Timer(Sender: TObject);
const
FormColors: array[Boolean] of TColor = (clLime, clRed);

begin
Color := FormColors[InSendMessage]

end;

procedure TLogoAppForm.FileSend1Execute(Sender: TObject);
var
MapiMessage: TMapiMessage;
MError: Cardinal;

begin
with MapiMessage do begin
ulReserved := 0;
lpszSubject := nil;
lpszNoteText := PChar(RichEdit1.Lines.Text);
lpszMessageType := nil;
lpszDateReceived := nil;
lpszConversationID := nil;
flFlags := 0;
lpOriginator := nil;
nRecipCount := 0;
lpRecips := nil;
nFileCount := 0;
lpFiles := nil;

end;
MError := MapiSendMail(0, 0, MapiMessage,
MAPI_DIALOG or MAPI_LOGON_UI or MAPI_NEW_SESSION, 0);

if MError <> 0 then
MessageDlg(SSendError, mtError, [mbOK], 0);

end;

➤ Listing 2: Proving that SendMessage is the culprit.

➤ Listing 3: The Delphi wizard MAPI code.

➤ Figure 1: The Delphi wizard generated app sending an email.

August 2000 The Delphi Magazine 61

setting up an attachment, but acts
as a good starting point. In fact the
code invokes your installed MAPI
client (typically Microsoft Outlook,
if installed) and asks it to let you
finish setting up the mail, as you
can see in Figure 1.

If you want the whole thing to be
controlled by the application, then
you can set up more of the MAPI
message record yourself. Listing 4
shows a SendMail procedure that
can be used to set up a MAPI mes-
sage with the sender’s details, one
recipient and any number of
attachments.

You can see that the sender and
recipients are described in a
TMapiRecipDescrip record and each
file attachment is described in a
TMapiFileDesc record. The code
allocates memory for as many file
description records as are
required. It could be modified to
also allocate space for an arbitrary
number of message recipients,
but I tried to keep it as simple as
possible.

Note that MAPI can be con-
trolled using Automation, but this
code was written using APIs to
make it more efficient.

Another possible approach
would be to automate Microsoft
Outlook, if installed, to send an
email (useful if your users already
use Outlook and want to keep the
same UI). Care should be taken
when doing this as undesirable
results can be achieved (I refer to

various examples of worm viruses
that have circulated recently, most
notably the Love Bug virus).

I discussed automating Outlook
to some extent in The Delphi Clinic
back in Issue 35, so I would recom-
mend having a read through that
past coverage, but it did not get as
far as sending an email. However, a
small amount of knowledge of the
Outlook Automation interfaces will
allow you to concoct something
like Listing 5 (from the Outlook.dpr
project).

The code starts an Outlook
session, and then creates a mail
object with CreateItem. The object
then has its various properties
filled in, including recipient,
sender, message and attachments.
When this has been done, the
message is ready to send. Instead
of directly sending the message,
you could ask Outlook to display
the pending mail, so the user can
finish off anything that needs

doing. This can be done by calling
Mail.Display instead of Mail.Save
and Mail.Send.

The FastNet components also
offer an option for sending mail.
Delphi 4 (and later) has native
versions of these components,
including the TNMSMTP component
for sending an email. You can find a
demo project for this in Delphi’s
Demos directory. Delphi 4 has an
SMTP directory underneath the
Internet directory, whereas Delphi
5 renames Internet to FastNet.

[Another SMTP component worth
considering is TSMTPClient, which
is included in Frank Piette’s excel-
lent free internet component suite
(downloadable from www.rtfm.be/
fpiette) and supports file attachment
using the MIME format. Example
programs are included and you get
source code too. Ed]

procedure SendMail(const Subject, MessageText, MailFromName,
MailFromAddress, MailToName, MailToAddress: String;
const Attachments: array of String);

var
MAPIError: DWord;
MapiMessage: TMapiMessage;
Originator, Recipient: TMapiRecipDesc;
Files, FilesTmp: PMapiFileDesc;
FilesCount: Integer;

begin
FillChar(MapiMessage, Sizeof(TMapiMessage), 0);
MapiMessage.lpszSubject := PChar(Subject);
MapiMessage.lpszNoteText := PChar(MessageText);
FillChar(Originator, Sizeof(TMapiRecipDesc), 0);
Originator.lpszName := PChar(MailFromName);
Originator.lpszAddress := PChar(MailFromAddress);
MapiMessage.lpOriginator := @Originator;
MapiMessage.nRecipCount := 1;
FillChar(Recipient, Sizeof(TMapiRecipDesc), 0);
Recipient.ulRecipClass := MAPI_TO;
Recipient.lpszName := PChar(MailToName);
Recipient.lpszAddress := PChar(MailToAddress);
MapiMessage.lpRecips := @Recipient;
MapiMessage.nFileCount :=
High(Attachments) - Low(Attachments) + 1;

Files := AllocMem(SizeOf(TMapiFileDesc) *
MapiMessage.nFileCount);

MapiMessage.lpFiles := Files;
FilesTmp := Files;
for FilesCount := Low(Attachments) to
High(Attachments) do begin
FilesTmp.nPosition := $FFFFFFFF;
FilesTmp.lpszPathName := PChar(Attachments[FilesCount]);
Inc(FilesTmp)

end;
try
MAPIError := MapiSendMail(0,
Application.MainForm.Handle,
MapiMessage, MAPI_LOGON_UI or MAPI_NEW_SESSION, 0);

if MAPIError <> 0 then
MessageDlg(LoadStr(sSendError), mtError, [mbOK], 0)

finally
FreeMem(Files)

end
end;
procedure TLogoAppForm.FileSend(Sender: TObject);
begin
SendMail('Subject', 'Message text',
'The Delphi Clinic', 'clinic@blong.com',
'The Delphi Magazine', 'chrisf@itecuk.com',
['c:\autoexec.bat'])

end;

➤ Listing 4: Setting up a full
MAPI message. procedure SendMail(const Subject, MessageText, MailFromAddress,

MailToAddress: String; const Attachments: array of String);
var
Outlook, Mail, Recipient: Variant;
I: Integer;

const
olMailItem = 0;
olOriginator = $00000000;
olTo = $00000001;

begin
Outlook := CreateOleObject('Outlook.Application');
Mail := Outlook.CreateItem(olMailItem);
Recipient := Mail.Recipients.Add(MailToAddress);
Recipient.Type := olTo;
Recipient := Mail.Recipients.Add(MailFromAddress);
Recipient.Type := olOriginator;
for I := 1 to Mail.Recipients.Count do
Mail.Recipients[I].Resolve;

Mail.Subject := Subject;
Mail.Body := MessageText;
for I := Low(Attachments) to High(Attachments) do
Mail.Attachments.Add(Attachments[I]);

Mail.Save;
Mail.Send

end;

➤ Listing 5: Sending an email by
automating Outlook.

62 The Delphi Magazine Issue 60

Component Construction

QI wonder if you could help
me with a problem we are

having porting a project from
Delphi 1 to Delphi 4. As I under-
stood it, a Delphi 4 form is
constructed in the following order:

1. The TForm constructor starts.
2. Each component on the form

is constructed.
3. Each component on the form

loads its published properties and
hooks in its events.

4. The TForm constructor is
almost finished so the OnCreate
event is triggered.

However, in a form in our project
we seem to be getting the events
hooked in and one of a compo-
nent’s published properties
assigned (a TStrings property) in
phase 2. This is causing a problem
as the component’s OnChange event
is being called which references
another (as yet uncreated) compo-
nent, thereby causing an Access
Violation.

If we remove the design-time
event hooks from the component
then everything is fine, but we are
rather perturbed as the chain of
events (pun unintended) is not as
we thought it was. Could you
please clear up the exact order of
things inside a form’s constructor?

AThe first thing that happens
in a form’s Create construc-

tor is that another constructor is
called. CreateNew creates a simple
TForm object with no DFM form
resource accessed in any way.
Then Create proceeds to include
fsCreating in its FormState
property.

Assuming the form resource can
be found (which should have been
linked into the executable) it is
now read in piece by piece using a
stream that reads directly from the
resource. You can see the form
resource in textual form by right
clicking on any form designer and
choosing View As Text. Listing 6
shows a simple form resource dis-
played in textual form. It repre-
sents a form with a button dropped
on it.

What you see in the form
resource are a number of nested

sections describing components
and their property values (those
with non-default values, or those
for which there is no specified
default). The outermost section
describes the form (or maybe data
module or web module, but we will
call it a form for simplicity) and
contains sections for each child
control and non-visual component.
For any component that is a win-
dowed control and has other child
components, additional sections
will be nested within. We will need
to look into how these sections are
processed to better understand
the form streaming mechanism.

If the form has been set up using
Visual Form Inheritance (VFI) the
code will first process the base
form class resource in and work its
way back to the actual class form
resource one layer at a time. How-
ever, for each level the procedure
is much the same.

As the code starts reading
through these nested object sec-
tions, it reads the component class
name and passes it to FindClass to
get a class reference through
which it can create the component
instance. Next, csLoading and
csReading are included in the com-
ponent’s ComponentState property.
The component name is then read
and applied followed by all the
other component properties in
turn.

The exceptions to this pattern
include the outermost object,
which is the form. The form has
already been created earlier in the
constructor and so the form class
and name are skipped during the
stream read. The same applies
when dealing with VFI. If a compo-
nent has already been created
thanks to an ancestor form class
resource, it is not recreated when
modified properties are read in
from a descendant form resource.

As the properties are read, spe-
cial consideration is given to event
properties and object reference
properties. In the case of event
properties, the form’s published
method table is used to connect
the property to the address of the
relevant method in the form, as
described in my Fatal Startup Error
article from Issue 30.

Problems could potentially arise
when the streaming code reads in
properties that are supposed to be
connected to other components.
What if the linked-to component
has not been created by the time a
property refers to it? Fortunately
such technical hitches have been
foreseen and the streaming code
uses a fix-up list for any object ref-
erence properties that are encoun-
tered. All these fix-ups are
processed (meaning the pending
object references are ‘fixed up’)
after all components on the form
have been constructed and
otherwise fully read in.

Given that Delphi 2 and later
allow you to connect a property to
a component on another form
(which itself may not be created),
some fix-ups may remain unre-
solved at this point. These are left
in the fix-up list to be attempted
again when the next form has fin-
ished initialising its components.
This continues after each new
form is created until (hopefully) all
fix-ups are dealt with.

When the properties are all read
in, csReading is removed from the
ComponentState property. Next the
new component is assigned to the
relevant object reference data
field in the form using the form’s
published field table (also
discussed in the article from Issue
30). At this point the afore-
mentioned fix-ups are processed.

When all components on the
form have been constructed and
had their properties read in,

➤ Listing 6: A form resource
viewed as text.

object Form1: TForm1
Left = 192
Top = 107
Width = 112
Height = 71
Caption = 'Form1'
Color = clBtnFace
Font.Charset = DEFAULT_CHARSET
Font.Color = clWindowText
Font.Height = -11
Font.Name = 'MS Sans Serif'
Font.Style = []
OldCreateOrder = False
PixelsPerInch = 96
TextHeight = 13
object Button1: TButton
Left = 8
Top = 8
Width = 75
Height = 25
Caption = 'Button1'
TabOrder = 0

end
end

64 The Delphi Magazine Issue 60

the Loadedmethod for each compo-
nent is called in turn. The default
implementation of Loaded removes
csLoading from ComponentState.
Loaded can be used by components
to perform actions that rely on the
values of several properties that
could have been stored in any
arbitrary order. For example,
TTablewaits until Loaded in order to
deal with an Active property
having a stored property of True.
This saves problems if the Active
property is read in before
DatabaseName, TableName and so on.

Now that the form’s constructor
is nearly over, fsCreating is
removed from FormState. In Delphi
1, 2 and 3 the OnCreate event is now
triggered just before the construc-
tor exits and the same is true in
Delphi 4 and later if the
OldCreateOrder property is True. If
OldCreateOrder is False (the
default), Delphi 4 and later wait
until the form’s AfterConstruction
to trigger OnCreate.

So to summarise the order of
events:

1. The TForm constructor
starts.

2. The form resource is tra-
versed, constructing each compo-
nent in turn and setting its
properties and events, and assign-
ing it to the corresponding form
data field before moving onto the
next component.

3. Any fix-ups recorded for
object reference properties are
tied up.

4. Each constructed compo-
nent’s Loaded method is called.

5. The TForm constructor final-
ises and the OnCreate event is
called.

The problem is likely to be
caused by not realising each prop-
erty is assigned individually, caus-
ing the corresponding property
writer to execute. If you have prop-
erties whose assignments will trig-
ger the OnChange event, perhaps
you should check if csReading is in
ComponentState before going ahead
and triggering it.

Code Completion

QWhen I use Class Completion
in Delphi 5 to generate

method implementations, it some-
times inserts the inherited key-
word in the method body. What
criteria does it use to decide when
to do this?

AClass Completion, as intro-
duced in Delphi 4, is a time

saver for implementing the basic
skeleton of procedure methods,
function methods and properties
(typically involving methods as
well). Ignoring properties, Class
Completion can work from a
method declaration and enter the
implementation skeleton for you
or take a method implementation
and insert an appropriate
declaration in the class. All you do
is press Shift+Ctrl+Cwhen the cur-
sor is in a class definition or
method, or right-click and choose
Complete class at cursor.

If a method declaration involves
the reserved word override, it is
clear that this is a polymorphic
method, which will be declared in
one of the ancestor classes with an
identical signature, marked with
either virtual, dynamicor override.

Often when overriding an exist-
ing polymorphic method, a devel-
oper will wish to chain back to the
original definition by using the
inherited keyword, before execut-
ing their own code. This way, the
behaviour of a polymorphic
method in a class can be extended
in descendant classes.

This is done using the inherited
keyword, optionally in conjunction
with the method name and
parameters. Take this method
declaration:

procedure Foo(Bar: Integer);
override;

In the implementation, the devel-
oper can call the original version of
the routine inherited from the
ancestor class like this:

inherited Foo(Bar);

Of course, alternative parameters
can be passed if desired. However,
assuming the same parameters are
to be passed to the ancestor
method, this statement can be
abbreviated to inherited.

Class Completion will insert the
reserved word inherited in the
implementation of any overridden
polymorphic procedure method,
followed by a blank line where you
can start entering your code. If you
do not want to call the inherited
version, you can remove the call.
Note that it uses the abbreviated
version to save having to enter ref-
erences to the method name along
with all the parameters.

This simple template is used
regardless of the intent of the
method and so is also the case in
overridden destructors (which are
procedures with an extra syntactic
implication of ultimately releasing
the object instance’s allocated
memory space). This explains why
a destructor generated by Class
Completion looks like Listing 7.
Normally with destructors, you
execute your own tidying up code
before chaining back to the inher-
ited destructor. However, Code
Completion does not realise it is
dealing with a destructor.

Having looked so far at proce-
dure methods, let’s now consider
function methods. Functions must
return a result, and so a common
pattern for the implementation of
an overridden function method is
to precede your extra code with:

Result := inherited Foo(Bar);

However, there is no valid abbrevi-
ation for this, so Class Completion
doesn’t bother inserting anything.
The Delphi 4 and 5 version is not
written with enough flexibility to
generate the required statement
so it does nothing. Maybe Delphi 6
will have a more intelligent Class
Completion...

➤ Listing 7: A destructor
generated by Class
Completion.

destructor TForm1.Destroy;
begin
inherited;

end;

	Unexpected COM Error
	Delphi And Email
	Component Construction
	Code Completion

